Review

The Use of CO₂ Laser in the Treatment of Peri-implantitis

George Romanos,1,2 Hua-Hsin Ko,3 Stuart Froum,3 and Dennis Tarnow3

Abstract

Different techniques have been used for the treatment of peri-implant defects. However, there are always questions about the issue of reosseointegration. The present paper explores the recent literature on the topic of peri-implantitis therapy, and presents a surgical protocol for implant surface decontamination using the CO₂ laser, grafting of the defect, and coverage with a membrane according to a clinical case. The results appear to be promising and may improve the long-term clinical outcomes of failing dental implants.

Introduction

Enodseous implants have a high survival rate in the restoration of fully or partially edentulous patients.1 However, over a 5-y period, up to 14.4% of dental implants demonstrated peri-implant inflammatory reactions associated with bone loss.2 Implant failure has classically been attributed to bacterial infection, surgical trauma, premature fixture overload, faulty or incorrect prosthetic design, and/or improper surgical placement. The etiology of failure is thought to be infection, if there is bleeding, suppuration, pain, and high plaque and gingival indices (Figs. 1 and 2). This infectious process with progressive bone loss (Fig. 3) seen over time is categorized as peri-implantitis.3

Ideally, bone-to-implant contact should be increased and implants should become reosseointegrated. At present, there is no evidence about the utility of anti-infective treatment to prolong the longevity of an implant. There is also insufficient evidence to support any specific treatment strategy with respect to treatment of peri-implantitis.3,5 Numerous treatments have been recommended for peri-implantitis. Guided bone regeneration (GBR) has been used for the treatment of peri-implant bony defects; however, this procedure has limited efficacy.6 Currently, there are no clinical studies or case series documenting successful regenerative procedures in peri-implant bony lesions. Some case series demonstrated limited bone filling after GBR procedures.6 To enhance the results, some investigators have suggested that it is necessary to decontaminate defective implant surfaces.6,10–13

Several different methods of implant decontamination have been proposed.13 Neither subgingival irrigation with local disinfectants12,14,15 nor local antibiotic therapy with tetracycline fibers provided conclusive therapeutic effects.16 Systemic administration of antibiotics has also been used in the treatment of peri-implantitis; however, the success was limited due to resistant strains of bacteria and ineffective drug dosages.17,18 Citric acid application with sandblasting,7,19 sandblasting alone,20–22 or chlorhexidine irrigation23 have also been recommended. However, implant decontamination using sandblasting units has been associated with risks such as emphysema.24

In contrast, encouraging results in dogs have been reported using the CO₂ laser for decontamination to improve reosseointegration.25 Findings of this animal study suggested that the laser may be an effective therapeutic modality in the treatment of peri-implantitis.

The purpose of the present paper was to review the literature on the use of the CO₂ laser in the treatment of peri-implantitis, and to discuss the indications, advantages, and disadvantages of this technique.

Materials and Methods

The literature search using MEDLINE at the Waldman Library of the New York University College of Dentistry Kriser Dental Center included a review of 71 articles from peer-reviewed journals published in English from January 1986 to December 2007. The keywords utilized were “carbon dioxide laser” and “implant” (36 articles); “laser” and “peri-implantitis” (23 articles); and “CO₂ laser decontamination” (12 articles).
articles). In addition, this paper presents the surgical protocol of the treatment of peri-implantitis using a CO2 laser according to a clinical case report.

Results

The results of this literature review are presented in Table 1. The data include the type of study, decontamination type, implant surface, augmentation procedure (bone grafting material), and the results. The literature analysis is focused on the use of the CO2 laser for implant surface decontamination and the treatment of peri-implantitis.

Most of the in vitro studies using the CO2 laser showed no structural changes in the implant surface. In most studies a significant degree of bacterial reduction has been documented. In vivo animal studies demonstrated promising results with reosseointegration occurring after CO2 laser decontamination. In one human clinical study,37 sufficient decontamination led to new bone formation. According to this experience we used a similar protocol to decontaminate the surface of defective implants. After elevation of a mucoperiosteal flap, removal of granulation tissue with plastic curettes, decontamination with a CO2 laser (Figs. 4, 5, and 6; continuous mode, power levels of 2–4 W, with a non-contact defocused handpiece), augmentation with bone grafting material, use of an absorbable membrane (GBR), and flap closure, we found good healing and new bone formation compared to baseline (Fig. 7). Recent clinical studies using the CO2 laser to decontaminate implant surfaces and bone filling with autogenous bone or bone grafting materials showed good results and long-term success of the oral implants.38

Discussion

Non-surgical methods to treat peri-implantitis include mechanical instrumentation and the use of a variety of antibacterial agents. The antibiotic treatment of peri-implantitis may not allow sufficient bone filling or reosseointegration in deep peri-implant bony defects. Surgical therapy may be necessary to treat peri-implant defects,10,11,13 however, to date no treatment method has attained consistent long-term results.

With the protocol described above it is possible to efficiently decontaminate the implant surface and to augment the peri-implant bony defects with either autogenous bone or bone replacement graft materials. In an animal model, osseous filling and reosseointegration were observed. This conclusion was supported by the histological observations by Deppe et al.25 and Stübinger et al.,34 who noted that reosseointegration occurred and bone filling was induced in peri-implant defects after CO2 laser irradiation.

The physical properties of the laser energy and its interaction with tissues, due to reflection, scattering, transmission, and absorption, may explain why the implant surface can be decontaminated in all areas, including within the threads. The light may induce these antibacterial effects due to its absorption by the implant and the surrounding tissues, or it may be reflected by the metal surface, causing a slight elevation in tissue temperature.

The temperature changes seen during CO2 laser irradiation have been studied extensively.29,39–41 Linear increases to temperatures >50°C were observed with increases in power levels and exposure times, and the pulse mode generated significantly less heat. The results of this study suggest that caution should be exercised when using the CO2 laser for second-stage dental implant surgery, as the temperatures of
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Study type</th>
<th>Decontamination technique</th>
<th>Implant surface</th>
<th>Guided bone regeneration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganz</td>
<td>1994</td>
<td>In vitro study (pig mandibles)</td>
<td>CO₂</td>
<td>Hydroxyapatite coated</td>
<td></td>
<td>Minimal temperature change</td>
</tr>
<tr>
<td>Oyster et al.</td>
<td>1995</td>
<td>In vitro study (pig mandibles)</td>
<td>CO₂</td>
<td></td>
<td></td>
<td>Time and power affected the temperature rise</td>
</tr>
<tr>
<td>Kato et al.</td>
<td>1998</td>
<td>In vitro study (titanium discs)</td>
<td>CO₂</td>
<td>Machined, sandblasted</td>
<td></td>
<td>Efficiently decontaminate bacteria without altering implant surface</td>
</tr>
<tr>
<td>Mouhyi et al.</td>
<td>1999</td>
<td>In vitro study (titanium foil)</td>
<td>CO₂ + hydrogen peroxide + citric acid</td>
<td>TiO₂</td>
<td></td>
<td>Re-establishment of the atomic composition and oxide structure</td>
</tr>
<tr>
<td>Romanos et al.</td>
<td>2001</td>
<td>In vitro (titanium discs)</td>
<td>CO₂</td>
<td>Various</td>
<td></td>
<td>No surface modifications</td>
</tr>
<tr>
<td>Deppe et al.</td>
<td>2001</td>
<td>In vivo study (beagle dogs)</td>
<td>CO₂, CO₂ + sandblasting</td>
<td>TPS</td>
<td>e-PTFE only</td>
<td>New bone formation</td>
</tr>
<tr>
<td>Romanos et al.</td>
<td>2002</td>
<td>In vitro (titanium discs)</td>
<td>CO₂</td>
<td>Sandblasted</td>
<td></td>
<td>Bacterial reduction</td>
</tr>
<tr>
<td>Kreisler et al.</td>
<td>2002</td>
<td>In vitro (titanium discs)</td>
<td>CO₂</td>
<td>Various</td>
<td></td>
<td>No damage</td>
</tr>
<tr>
<td>Persson et al.</td>
<td>2004</td>
<td>In vivo study (beagle dogs)</td>
<td>CO₂ + hydrogen peroxide + systemic antibiotics</td>
<td>Sandblasted large-grit acid-etched, machined</td>
<td>X</td>
<td>New bone formation</td>
</tr>
<tr>
<td>Stübinger et al.</td>
<td>2005</td>
<td>In vivo study (beagle dogs)</td>
<td>CO₂</td>
<td>TPS</td>
<td>X</td>
<td>New bone formation</td>
</tr>
<tr>
<td>Park et al.</td>
<td>2005</td>
<td>In vitro (titanium discs)</td>
<td>CO₂</td>
<td>Various</td>
<td></td>
<td>No damage</td>
</tr>
<tr>
<td>Romanos et al.</td>
<td>2006</td>
<td>In vitro (titanium discs)</td>
<td>CO₂</td>
<td>Various</td>
<td></td>
<td>Osteoblast growth and attachment</td>
</tr>
<tr>
<td>Deppe et al.</td>
<td>2007</td>
<td>In vivo study (human)</td>
<td>CO₂</td>
<td>Various</td>
<td>β-TCP + e-PTFE</td>
<td>New bone formation</td>
</tr>
<tr>
<td>Romanos and Nentwig</td>
<td>2008</td>
<td>In vivo study (human)</td>
<td>CO₂</td>
<td>Various</td>
<td>Autogenous bone or BioOss + GBR</td>
<td>New bone formation</td>
</tr>
</tbody>
</table>

e-PTFE, expanded polytetrafluoroethylene; β-TCP, β-tricalcium phosphate; TPS, titanium plasma sprayed.
dry surfaces exceeded the accepted thresholds for bone damage at clinically relevant settings. However, these temperature changes were measured at the implant-bone interface. Studies have shown that the CO₂ laser produced minimal temperature changes in continuous mode at power levels <4 W, and when used in pulsed mode. Finally, Kreisler et al. concluded that implant surface decontamination with both laser types (CO₂ and GaAlAs) must be time-limited to allow the implant and bone to cool down.

Conclusion

The use of the CO₂ laser in the treatment of peri-implantitis deserves consideration as an efficacious treatment modality, as there appears to be little risk to the patient. However, the surgeon requires special training with respect to safety procedures and laser-tissue interactions. In addition, the cost of the laser unit and its wavelength must also be taken into consideration.

Further clinical and histological research is necessary to determine if long-term success can be achieved, and if re-osseointegration affects implant survival and controls the disease process. Special studies using systems with different implant designs and various implant surfaces may be useful to assess the efficacy of this treatment modality.

Disclosure Statement

No conflicting financial interests exist.

References

Address reprint requests to:
Dr. Georgios Romanos
Eastman Dental Center
Unit of Laser Dentistry
University of Rochester
625 Elmwood Avenue
Rochester, New York 14620

E-mail: Georgios_Romanos@urmc.rochester.edu
This article has been cited by:

3. Akiko Obata, Julian D.C. Jones, Akiyoshi Shinya, Toshihiro Kasuga. 2012. Sintering and Crystallization of Phosphate Glasses by CO2-Laser Irradiation on Hydroxyapatite Ceramics. *International Journal of Applied Ceramic Technology* n/a-n/a. [CrossRef]

